Abstract

A novel technique has been developed to directly produce fine ceramic powders from liquid solution via spray pyrolysis in a fluidized bed reactor (SPFBR). Using this technique the preparation of LiM0.15Mn1.85O4 (M = Mn, Co, Al, and Fe), which are the most promising cathode materials for lithium-ion batteries, has been carried out at a superficial velocity U0 of 0.71 m/s, a reactor temperature T of 800°C, and a static bed height Ls of 100 mm. The as-prepared powders were spherical nanostructured particles that comprised primary particles of a few tens of nanometers in size, and they exhibited a pure cubic spinel structure without any impurities in the XRD patterns. The chemical composition of as-prepared samples showed good agreement with the theoretical values that proved stoichiometric formulae of the compounds. The specific surface area of as-prepared LiM0.15Mn1.85O4 (M = Mn, Co, Al, and Fe) powders decreases with increasing the static bed height in each doping metal, while the crystallite size increases with the static bed height. As a result, the as-prepared powders showed larger crystallite size and smaller specific surface area than those prepared by conventional spray pyrolysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.