Abstract

This work is a continuation of the studies devoted to the synthesis of nanostructured carbon (NSC) as a result of the pyrolysis of a mixture of H2 + C3–C4 alkanes on supported Ni catalysts. Mesoporous alumina (γ-Al2O3) and titania (TiO2), on which Ni(II) compounds are deposited by impregnation or homogeneous precipitation, are studied as carriers. Using the methods of thermogravimetric analysis and scanning electron microscopy, it is shown that the activity of Ni catalysts (carbon yield) and the morphology of synthesized NSC are largely determined by the chemical nature of the support. It is found that the synthesis of NSC in the form of carbon nanofibers with a pronounced filamentary structure proceeds only on a Ni catalyst supported on titanium dioxide. The mesoporous carbon–mineral supports obtained after catalytic pyrolysis were studied in the adsorptive immobilization of the enzyme such as Thermomyces lanuginosus lipase. The adsorption properties of the supports, as well as the enzymatic activity and stability of the prepared biocatalysts in the esterification of saturated fatty acids (capric, C10: 0) with aliphatic alcohols (isopentanol, C5) in the non-aqueous media of organic solvents (hexane and diethyl ether) at ambient temperature, are studied. Biocatalysts prepared by lipase adsorption on NSC/TiO2 show the maximum esterification activity of 100 EA/g, which is 20–45 times higher than the activity of lipase adsorbed on NSC/Al2O3.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.