Abstract

Al-doped ZnO thin films have been prepared by a novel successive chemical solution deposition technique. The variation in morphological, structural, electrical, and optical properties of nanostructured films with doping concentration is investigated in details. It was demonstrated that rapid photothermal processing (RPP) improves the quality of nanostructured ZnO films according to the enhancement of resonant Raman scattering efficiency, and the suppression of the visible luminescence with the increase of RPP temperature. It was found from the I– V characteristics of ZnO/Si heterojunction that the average short-circuit current density is about 8 mA/cm 2. For 1%Al-doped ZnO/SiO 2/Si structure, the short-circuit current density is about 28 mA/cm 2. The improvement shown in the characteristics may be assigned partially to the reduction of the defect density in the nanostructured Al-doped ZnO films after RPP. The correlations between the composition, microstructure of the films and the properties of the solar cell structures are discussed. The successive chemically deposited Al-doped ZnO thin film offers wider applications of low-cost solar cells in heterojunction structures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.