Abstract

Abstract Our goal is to investigate the physical, magnetic and dielectric properties of cadmium ferrite nanoparticles. Here we report the synthesis of nanosized cadmium ferrite (CdFe2O4) spinel ferrite by the sol-gel process using citric acid as a complexing agent. We assessed the properties of nano-CdFe2O4 by a variety of analytical and physical techniques. X-ray diffraction and Fourier transform infrared spectroscopy were performed to confirm spinel phase formation. Surface morphology images and compositional features were obtained using electron microscopy and other imaging techniques. Transmission electron microscopy analysis revealed the formation of nanoparticles with an average particle size of 40 nm. The magnetic properties were characterized by a highly sensitive magnetometer system (SQUID VSM) at room temperature revealing that the sintered sample of cadmium ferrite nanoparticles is ferromagnetic. We also studied dielectric behavior of the sintered pellet of the sample. We determined the frequency dependence of the dielectric permittivity, the loss factor and the impedance of the samples in the frequency range from 100 Hz to 20 MHz, at temperatures from 308–428 K at an interval of 40 °C. The dielectric behavior of ferrites is explained by the interface polarization, arising from the heterogeneous nature of its structure. Further research, both in terms of the preparation and characterization of ferrites, is warranted to better understand the nature and application of ferrites.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.