Abstract

Nanoporous silicon carbide materials were prepared by the pyrolysis of the preceramic polymer, polycarbosilane (PCS), with and without the addition of an inert filler (nano- and micron-sized silicon carbide powders). Hydrosilylation crosslinking of PCS with divinylbenzene prior to pyrolysis appeared to have little influence on the development of micro- and mesoporosity. Maximum micropore volumes were 0.28 cm 3 g −1 for non-crosslinked PCS and 0.25, 0.33 and 0.32 cm 3 g −1 for PCS crosslinked with 2, 6 and 10 wt.% DVB respectively. Micropore volumes decreased under hydrothermal conditions to 0.03 cm 3 g −1 for non-crosslinked and 0 cm 3 g −1 for crosslinked PCS. Porosity was also lost at temperatures above 700 °C. The addition of nano-sized SiC powders to PCS prior to pyrolysis maintained mesoporosity to temperatures of 1200 °C, however, micron-sized SiC powders did not maintain porosity above 800 °C. The modal pore size in pellets formed by compressing micron-sized powders with the preceramic polymer was 5 μm compared to 30 nm when nano-sized powders were used.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.