Abstract

The present work finds a new method for the synthesis of nanoporous graphene and its applications in high energy density supercapacitor. The synthesis of nanoporous graphene by wet chemical method using Mg/Zn strip as a reducing agent has been reported by many researchers, but its application of supercapacitor is not yet reported. The nanoporous graphene exhibited variations in structure, morphology, and electrochemical properties as compared to chemical reduction by sodium borohydride. In contrast, the formation of nanoporous graphene using Mg/Zn, it’s much faster than the chemical reduction by sodium borohydride. However, a significant improvement in the supercapacitor performance was observed upon Mg/Zn reduction method. In addition, the high electrical conductivity, improved higher surface area, better cyclability and typical electrochemical property enables one of the best high-rate performances studied for electrochemical supercapacitors: specific capacitance of 204 Fg−1 obtained at 10 Ag−1 with capacitance retention of 95% after 20000 cycles of charge-discharge.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.