Abstract

Facing the daunting challenge of climate change, driven by escalating greenhouse gas concentrations, our research introduces an innovative solution for CO2 capture. We explore a novel nanoporous carbon derived from Ulva lactuca, activated with eggshell waste, spotlighting waste valorization in mitigating atmospheric CO2. Through a systematic methodology encompassing variable carbonization temperatures (700-900°C) and nitrogen flow rates (2-4ml/min), complemented by a suite of characterization techniques, we unveil the synthesis of this pioneering adsorbent. Our study not only presents a novel, sustainable pathway for CO2 capture but also demonstrates superior performance, particularly with the NC800-4 sample, achieving a CO2 capture capacity of 1.40mmol/g at 30°C, alongside demonstrating consistent adsorption efficiency over four successive adsorption/desorption cycles. This breakthrough underscores the potential of leveraging waste for environmental remediation, offering a dual solution to waste management and carbon capture, utilization, and storage (CCUS) applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.