Abstract

In the current study, a novel nanomaterial called nanomagnetite/copper oxide/potassium carrageenan nanocomposite (MKCO) was fabricated to include Fenton (nanomagnetite, NM) and Fenton-like reagent (copper oxide nanoparticles, NCO) in a matrix of potassium carrageenan biopolymer. The prepared solid materials were characterized by different physicochemical techniques, such as TGA, N2 adsorption/desorption, SEM, TEM, XRD, DRS, pHPZC, and FTIR. The prepared MKCO showed unique properties like higher specific surface area of 652.50 m2/g, pore radius of 1.19 nm, pHPZC equals 7.80, and the presence of different surface chemical functional groups. Under various application conditions, comparative experiments between Safranin-O dye (SO) adsorption and Photo-Fenton catalytic degradation were conducted. After 24 h, MKCO had a maximum adsorption capacity of 384.61 mg/g at 42 °C, while the Photo-Fenton oxidation process took only 10 min to totally decompose 93% of SO at 21 °C. Based on the higher values of correlation coefficients, Langmuir’s adsorption model is the best-fitted adsorption model for SO onto all the prepared solid materials. Studies on SO adsorption’s kinetics and thermodynamics show that it is physisorption and that it operates according to endothermic, spontaneous, and PFO model processes. While, PFO, endothermic, and non-spontaneous processes are satisfied by the catalytic decomposition of SO. After five application cycles, MKCO demonstrated good catalyst reusability with a 3.4% decrease in degrading efficiency. For lower contaminant concentrations and shorter application times, Photo-Fenton catalytic degradation of organic pollutants is more effective than adsorption.Graphical abstractFenton and Photo-Fenton degradation of Safranin-O

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.