Abstract

Nanometer-scaled yttria (Y2O3) powders were synthesized by a polymer solution route using polyvinyl alcohol (PVA) as an organic carrier. The PVA polymer contributed to a soft and porous powder microstructure, and homogeneous precursor gels containing PVA polymer were effective in making nanometer-sized yttria powders. In this process, the content of PVA and the calcination temperature strongly affected the microstructure and crystallization behavior of the yttria powders. The homogeneous precursors were crystallized to a stable yttria phase at 600 °C for 1 h. In this paper, a simple solution technique for the fabrication of nanometer-sized yttria powders is introduced. The effects of PVA on the powder morphology and on powder specific surface area were studied. The characterization of the synthesized powders was examined by using XRD, DTA/TG, SEM, TEM, a particle size analyzer and nitrogen gas adsorption. The yttria powder synthesized from PVA with a content ratio of 4:1 revealed a crystallite size of about 15 nm with a high surface area of 34.71 m2/g.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.