Abstract
SnO2 solid microspheres and multilayered nanocrystalline SnO2 hollow microspheres (MHS-SnO2) have been successfully synthesized in the solvothermal environment by using different solvents. The morphology, structure and composition of the as-prepared products are characterized by field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM) with selected area electron diffraction (SAED) and X-ray diffraction (XRD). The growth mechanism of SnO2 solid microspheres and MHS-SnO2 are proposed and attributed to the viscosity of solvent. The studies on hydrogen absorption characteristics of SnO2 solid structure and MHS-SnO2 show an absorption capability of 0.50 wt.% and 0.92 wt.%, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.