Abstract

Diamond is one of the most valuable materials for the industrial applications because of its excellent properties including high hardness, with good electrical insulation and thermal conductivity. Mechanical polishing processes of diamond are difficult and very costly. To limit those costs, it is reasonable to think that the surface roughness of the as-grown diamond film should be as small as possible. In this study, a nanocrystalline diamond film was synthesized on a 4-inch Si wafer at 923 K and methane concentration of 10 vol.%, (H 2/CH 4=100/10 sccm) using a microwave plasma CVD system. In order to increase the nucleation density, the substrate was pretreated by dry scratch method with diamond powder of two sizes (250 nm and 5 nm). The nucleation density was approximately 1×10 11 cm −2. The grown diamond films were analyzed by Raman spectroscopy and X-ray diffraction (XRD). The grain size was observed to be approximately 10 nm by FE-SEM observation. Surface roughness was measured as Rms=8.4 nm by atomic force microscope (AFM). The as-grown properties of those nanocrystalline diamond films were almost efficient for tribological and the optical applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call