Abstract

Chemical vapor deposition (CVD) process is an effective way to fabricate highly pure ultra-fine powders; however commercial fabrication of high quality TiC powders through conventional CVD (TiCl4–H2–CH4) system remains a great challenge. The main obstacle is that the conversion of chemically stable TiCl4 to TiC is too low (theoretically 13.3% at 1000 °C) to provide sufficient supersaturation to form powders but only coating. To tackle this problem, relatively unstable TiCl3 was proposed as a novel precursor, which is easier to achieve homogeneous nucleation due to the higher conversion of TiCl3 to TiC in the TiCl3–CH4–H2 system (theoretically 37.7% at 1000 °C). In addition, a fluidized bed reactor (FBR) with fluidized TiC seeds providing local turbulence was employed to boost the homogeneous nucleation. Based on the novel idea, for the first time, high purity nano-sized TiC powders (about 77.1 nm, purity 99.46 at.%) were successfully fabricated by a fluidized bed chemical vapor deposition (FBCVD) process. More importantly, an advanced simple and effective process was successfully developed to activate the common TiCl4 raw material to synthesize nano-sized TiC powders by designing the reactor.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.