Abstract

The Na-W-H and Na-Re-H ternary systems were studied in a diamond anvil cell through X-ray diffraction and Raman spectroscopy, supported by density functional theory and molecular dynamics calculations. Na3WH9 can be synthesized above 7.8 GPa and 1400 K, remaining stable between at least 0.1 and 42.1 GPa. The rhenium analogue Na3ReH8 can form at 10.1 GPa upon laser heating, being stable between at least 0.3 and 32.5 GPa. Na3WH9 and Na3ReH8 host [WH9]3- and [ReH8]3- anions, respectively, forming homoleptic 18-electron complexes in both cases. Both ternary hydrides show similar structural types and pressure dependent phase transitions. At the highest pressures they adopt a distorted fcc Heusler structure (Na3WH9-II' and Na3ReH8-II') while upon decompression the structure symmetrizes becoming fcc between ∼6.4 and 10 GPa for Na3WH9-II and at 17 GPa for Na3ReH8-II. On further pressure release, the fcc phases transform into variants of a (quasi-) hexagonal structure at ∼3 GPa, Na3WH9-I and Na3ReH8-I.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.