Abstract

Sodium vanadium oxide (Na1.25V3O8) nanobelts have been successfully prepared by a facile sol-gel route with subsequent calcination. The morphologies and the crystallinity of the as-prepared Na1.25V3O8 nanobelts can be easily controlled by the calcination temperatures. As cathode materials for lithium ion batteries, the Na1.25V3O8 nanobelts synthesized at 400 °C exhibit a relatively high specific discharge capacity of 225 mA h g(-1) and excellent stability at 100 mA g(-1). The nanobelt-structured electrode can retain 94% of the initial capacity even after 450 cycles at the current density of 200 mA g(-1). The good electrochemical performance is attributed to their nanosized thickness and good crystallinity. The superior electrochemical performance demonstrates the Na1.25V3O8 nanobelts are promising cathode materials for secondary lithium batteries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.