Abstract

[60]Fullerene derivatives with high thermal stability can be used for vacuum deposition under heating to fabricate thin films for organic electronic devices. Here, we investigated the thermal stability of [60]fullerene derivatives with various bulky substituents for thermal evaporation under vacuum by means of thermogravimetric analysis under reduced and normal pressure. We found sterically bulky groups such as tert-butyl groups of [60]fullerene derivatives lowered the vacuum deposition temperature. Also, we performed isothermal thermogravimetric analysis to examine the long-term thermal stability of the designed compounds under heating conditions. Furthermore, we investigated the UV-Vis absorption patterns of the deposited films. Absorption in the blue wavelength range, which was attributed to intermolecular HOMO-LUMO transitions among the molecular orbitals of adjacent [60]fullerenes, was dramatically modified. These results were associated with the prevention of aggregation among neighboring [60]fullerene by the sterically bulky groups. This concept could contribute to expanding the use of evaporable [60]fullerene derivatives in organic thin-film electronics research fields.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.