Abstract

N-Fmoc-(2S,3S,4R)-3,4-dimethylglutamine (6) was synthesized from tert-butyl N-Boc-(2S,3S,4R)-dimethylpyroglutamate (13). This synthesis involved selective deprotection of a Boc group from a lactam nitrogen in the presence of a tert-butyl ester, Fmoc protection of the lactam, and a lanthanide-catalyzed transamidation reaction of the Fmoc-protected lactam, using ammonia and dimethylaluminum chloride. The scope of Lewis acid-catalyzed transamidation of acylated lactams was explored through the variation of lanthanide, lactam, acyl group, amine, and aluminum reagent. The reactivity of various metal triflates was found to vary in the following qualitative order: Yb approximately Sc > Er approximately Eu approximately Sm > Ce approximately Ag(I) > Cu(II) approximately Zn. Intriguingly, catalysis was only observed when ammonia was the nitrogen nucleophile; addition of other amidoaluminum complexes to acyl lactams was found to be insensitive to the addition of lanthanides.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.