Abstract

AbstractSince 2020, some new breakthroughs in the field of MXene synthesis scheme such as water‐free etching, HCl‐based hydrothermal etching, halogen etching, and other novel synthesis methods have been proposed. Not only that, the application of MXene in zinc‐ion storage devices has also made great progress in the past 2 years. The understanding of zinc‐ion storage mechanism of MXene has undergone profound changes, and its applications have also become diversified, demonstrating the great potential of MXene for high performance zinc‐ion storage devices. In this review, we have summarized the preparation and synthesis of MXene materials and systematically investigated the progress of MXene in aqueous zinc‐ion storage devices. In particular, for the synthesis of MXene, we added recent reports of conventional synthesis schemes that have been widely reported to help understand their development and combined with recent novel synthesis schemes to provide a distinct partition framework. In addition, for the application of MXene, we discussed the cognitive change of zinc‐ion storage mechanism of MXene and conducted an in‐depth discussion about the design philosophy of MXene and their characteristics. Finally, a comprehensive perspective on the future development of MXene in the synthetic strategy and aqueous zinc‐ion storage applications have been outlined.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.