Abstract
In this study, an economic, sustainable, and green synthesis method of multiporous carbons from agricultural waste, water caltrop shell (denoted as WCS), was presented. To prepare the WCS biochar, the dried WCS was first carbonized to a microporous carbon with a surface area of around 230 m2 g–1 by using a top-lit-updraft method. Then, the microporous WCS biochar was directly mixed with an appropriate amount of ZnO nanoparticles and KOH as activating agents via a solvent-free physical blending route. After further activation at 900 °C, the resulted carbons possess both micropores and mesopores that were named as WCS multiporous carbons. The carbon yield of the prepared WCS multiporous carbons with high surface area in the range of 1175–1537 m2 g–1 is up to 50%. Furthermore, the micropore/mesopore surface area ratio can be simply tuned by controlling the ZnO content. For supercapacitor applications, the as-prepared WCS multiporous carbon electrodes showed high specific capacitance (128 F g–1 at 5 mV s–1) with a good retention rate at 500 mV s–1 scan rate (>60% compared to the capacitance at 5 mV s–1) and low Ohmic resistance in a 1.0 M LiClO4/PC electrolyte. In addition to the ZnO nanoparticles, CaCO3 nanoparticles with low environmental impact were also used to prepare the WCS multiporous carbons. The assembled supercapacitors also demonstrate high specific capacitance (102 F g–1 at 5 mV s–1) and good retention rate (∼70%).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.