Abstract

Dynamic ray shooting with interpolation is an economical way of computing approximate Green’s functions in 3-D heterogeneous anisotropic media. The amplitudes, traveltimes, and polarizations of the reflected rays arriving at the surface are interpolated to synthesize three‐component seismograms at the desired recording points. The algorithm is applied to investigate kinematic quasi-P-wave propagation and converted quasi-P-S-wave splitting variations produced in reflections from the bottom of a layer containing two sets of intersecting dry vertical fractures as a function of the angle between the fracture sets and of the intensity of fracturing. An analytical expression is derived for the stiffness constant C16that extends Hudson’s second‐order scattering theory to include tetragonal-2 symmetry systems. At any offset, the amount of splitting in nonorthogonal (orthorhombic symmetry) intersecting fracture sets is larger than in orthogonal (tetragonal-1 symmetry) systems, and it increases nonlinearly as a function of the intensity of fracturing as offset increases. Such effects should be visible in field data, provided that the dominant frequency is sufficiently high and the offset is sufficiently large. The amount of shear‐wave splitting at vertical incidence increases nonlinearly as a function of the intensity of fracturing and increases nonlinearly from zero in the transition from tetragonal-1 anisotropy through orthorhombic to horizontal transverse isotropy; the latter corresponds to the two crack systems degenerating to one. The zero shear‐wave splitting corresponds to a singularity, at which the vertical velocities of the two quasi‐shear waves converge to a single value that is both predicted theoretically and illustrated numerically. For the particular case of vertical fractures, there is no P-to-S conversion of vertically propagating (zero‐offset) waves. If the fractures are not vertical, the normal incidence P-to-S reflection coefficient is not zero and thus is a potential diagnostic of fracture orientation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.