Abstract
Abstract : In this paper, a method is presented for synthesizing multichannel autogressive random processes. The procedure allows for variable temporal and cross-correlation properties subject to specific constraint conditions for correlation functions. Expressions for the ergodic series are also developed providing a performance measure to specify the sample integration sizes required to achieve a specific variance of the time-averaged correlation function estimates. A unique aspect of this development is the determination of the functional dependence of the ergodic series in terms of the temporal correlation and variances of the processes. As a result, this analysis provides an analytic description which quantitatively assesses the ergodicity of the auto- and cross- correlation functions in terms of these fundamental process parameters. Thus, the variation of the process statistics based on time averages from those based on ensemble averages is given a more quantitative description than previously noted.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.