Abstract

Multi-walled carbon nanotubes (MWCNTs) have been grown on 7 nm Ni-coated substrates consisting of crystalline silicon covered with a thin layer (10 nm) of TiN, by combining hot-wire chemical vapor deposition (HWCVD) and direct current plasma-enhanced chemical vapor deposition (dc PECVD), at 620 °C. Acetylene (C 2H 2) gas is used as the carbon source and ammonia (NH 3) and hydrogen (H 2) are used either for dilution or etching. The carbon nanotubes range from 20 to 100 nm in diameter and 0.3 to 5 μm in length, depending on growth conditions: plasma intensity, filament current, pressure, C 2H 2, NH 3, H 2 flow rates, C 2H 2/NH 3 and C 2H 2/H 2 mass flow ratios. By combining the HWCVD and the dc PECVD processes, uniform growth of oriented MWCNTs was obtained, whereas by using only the HWCVD process, tangled MWCNTs were obtained. By patterning the nickel catalyst, with the use of the HW dc PECVD process, uniform arrays of nanotubes have been grown as well as single free-standing aligned nanotubes, depending on the catalyst patterning (optical lithography or electron-beam lithography). In the latter case, electron field emission from the MWCNTs was obtained with a maximum emission current density of 0.6 A/cm 2 for a field of 16 V/μm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.