Abstract

This study involved the synthesis and characterization of graphene oxide (GO) from mineral coke and bituminous coal. HCl treated and non-HCl treated ultrafine powder obtained from both precursors were treated with H2SO4, followed by thermal treatment, and oxidation with ozone and ultra-sonication for GO production. The synthesized materials were characterized using Fourier transform infrared spectroscopy (FTIR), zeta potential (ZP), particle size distribution (PSD), transmission electron microscopy (TEM), X-ray diffraction (XRD) and Raman spectroscopy. The results confirmed the exfoliation of the material primarily at the edges of its structure and the formation of multilayer graphene oxide (GO) from mineral coke and bituminous coal. Furthermore, it was found that carbonaceous materials with graphitic morphology are easier to exfoliate and oxidize, leading to the production of higher quality graphene oxide. Therefore, the GO synthesized from mineral coke exhibited the best quality in this study. The methodology used proposes an innovative approach, offering a faster, more economical, and environmentally friendly synthesis compared to the traditional Hummers method, thereby adding value to other raw materials that can be utilized in this process, such as Brazilian coke and coal.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call