Abstract

This paper presents a scalable method of preparing highly monodisperse core–shell particles and hollow spheres, and their application in fabricating colloidal crystals. By using polystyrene (PS) particles as the template and vinyltrimethoxysilane as the precursor, the core–shell particles could be obtained via direct growth of vinyl-SiO2 hybrid material on the negatively charged PS template. This method has two interesting characteristics. The first is the tunable shell thickness (from 10 to 170 nm) combined with a low polydispersity (smaller than 3%). Second, the method is simpler than traditional ones, which use surface modified PS as template to get a uniform coating. Furthermore, the core–shell particles could be converted into hollow SiO2 spheres by removing the PS cores in a calcination process. Both the PS@vinyl-SiO2 particles and the hollow SiO2 spheres could be self-assembled into three-dimensional colloidal crystals, because the resulting particles are highly monodisperse and suspensible.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.