Abstract
The use of molecularly imprinted polymers (MIPs) prepared by ring-opening metathesis polymerization (ROMP) for bisphenol A (BPA) was reported in this article. The resulting MIPs have high imprinting and adsorption capacities, and can be used for separation and determination of BPA in environmental water samples. The successful application of ROMP in the molecular imprinting field is described here. For the first time, two cross-linkers (dicyclopentadiene and 2,5-norbornadiene) and two Grubbs catalysts (first and second generation) were investigated to compare their effects on the binding performance of MIPs. The ROMP technique is able to create the imprinted polymers within 1 h under mild conditions. Furthermore, it can provide MIPs with obvious imprinting effects towards the template, very fast template rebinding kinetics, high binding capacity and appreciable selectivity over structurally related compounds. The adsorption process for MIPs in this study can be completed within 45 min, which is much faster than that of bulk MIPs synthesized by traditional free-radical polymerization. The resulting imprinting polymer was evaluated for its use as a sorbent support in an off-line solid-phase extraction approach to recover BPA from diluted aqueous samples. The optimized extraction protocol resulted in a reliable MISPE method suitable for selective extraction and preconcentration of BPA from tap water, human urine and liquid milk samples. This article demonstrates the practical feasibility of the MIPs prepared via ROMP as solid-phase extraction materials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.