Abstract

For the application of MPC design in on-line regulation or tracking control problems, several studies have attempted to develop an accurate model, and realize adequate uncertainty description of linear or non-linear plants of the processes. In this study, we employ the data-driven learning technique to iteratively approximate the dynamical parameters, without requiring a priori knowledge of system matrices. The proposed MPC approach can predict and optimize the future behaviors using multiorder derivatives of control input as decision variables. Because the proposed algorithm can obtain a linear system model at each sampling, it can adapt to the actual dynamics of time-varying or nonlinear plants. This methodology can serve as a data-driven identification tool to study adaptive optimal control problems for unknown complex systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.