Abstract

MnO@C core–shell nanoplates with a size of ∼150 nm have been prepared via thermal treatment deposition of acetylene with the precursor of Mn(OH)2 nanoplates, which has been hydrothermally synthesized. The thickness of the carbon shells varied from ∼3.1 to 13.7 nm by controlling the treatment temperature and reaction duration time. The electrochemical performance of the MnO@C nanoplates, which were synthesized at 550 °C for 10 h with a carbon shell thickness of ∼8.1 nm, display a high reversible capacity of ∼770 mA h g−1 at a current density of 200 mA g−1 and good cyclability after prolonged testing, which is higher than that of MnO@C nanoplates with a carbon shell thickness of ∼3.1, 4.0, 4.2, 10.9 and 13.7 nm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.