Abstract
MnO/C composites with hollow porous structure have been successfully synthesized by a facile biotemplating method combine with chemical bath deposition (CBD) method followed by calcination treatment. The natural porous lotus pollen grains are used as the biotemplate as well as the carbon source. The biological carbon could effectively enhance the electrical conductivity of MnO and cushion the strain arising from the charge/discharge cycles. Due to the unique structure, MnO/C composites exhibit a high reversible specific capacity of 730mAhg−1 at a current density of 0.1Ag−1 with excellent cycling stability. Even at a high current density of 3Ag−1, a remarkable reversible capacity of 430mAhg−1 could still be delivered.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.