Abstract

Mn-doped CdSe quantum dots (QDs) with a zinc blende structure were synthesized via a phosphine-free method in octadecene (ODE) and oleic acid. The structure, size, morphology, and optical property of the QDs were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM) and UV–visible absorption spectra (UV–Vis), respectively. The QDs were assembled onto a microporous TiO2 photoanode by an ex situ ligand exchange route. Quantum dot-sensitized solar cells (QDSCs) based on the above-synthesized QDs and polysulfide electrolytes were fabricated. The photovoltaic performance and impedance of the CdSe and Mn-doped CdSe QDSCs were further investigated. An improvement in efficiency to 1.84 % was achieved as compared with 0.94 % for the QDSCs based on the pure CdSe QDs. The improvement was ascribed to the existence of long-lived high-energy doping levels on the large-sized Mn-doped CdSe QDs, which provides a significant driving force for faster charge separation and electron transfer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.