Abstract

Mn₂O₃ has been demonstrated to be a promising electrode material for lithium-ion batteries. Thus, the fabrication of Mn₂O₃ nanomaterials with high specific capacity and cycling stability is greatly desired. Here we report a simple but effective method to synthesis Mn₂O₃ nanomaterials from a Mn(OH)₂ precursor, which was prepared from manganese acetate in ethylene glycol and water at 180 °C for 12 h. The morphology and sheet thickness of Mn(OH)₂ precursor could be tuned by controlling the ethylene glycol/H₂O volume ratio, resulting in a further tunable morphology and sheet thickness of the porous Mn₂O₃ nanomaterials. In the electrochemical tests the prepared Mn₂O₃ nanomaterials, with the porous architecture and thin thickness exhibited a high and stable reversible capacity, indicating that both small thickness and porous sheets structure are crucial for improving the electrochemical performance of Mn₂O₃ in terms of specific capacity and stability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.