Abstract

Diaminostannylenes react with [Ru(3)(CO)(12)] without cluster fragmentation to give carbonyl substitution products regardless of the steric demand of the diaminostannylene reagent. Thus, the Sn(3)Ru(3) clusters [Ru(3){μ-Sn(NCH(2)(t)Bu)(2)C(6)H(4)}(3)(CO)(9)] (4) and [Ru(3){μ-Sn(HMDS)(2)}(3)(CO)(9)] (6) [HMDS = N(SiMe(3))(2)] have been prepared in good yields by treating [Ru(3)(CO)(12)] with an excess of the cyclic 1,3-bis(neo-pentyl)-2-stannabenzimidazol-2-ylidene and the acyclic and bulkier Sn(HMDS)(2), respectively, in toluene at 110 °C. The use of smaller amounts of Sn(HMDS)(2) (Sn/Ru(3) ratio = 2.5) in toluene at 80 °C afforded the Sn(2)Ru(3) derivative [Ru(3){μ-Sn(HMDS)(2)}(2)(μ-CO)(CO)(9)] (5). Compounds 5 and 6 represent the first structurally characterized diaminostannylene-ruthenium complexes. While a further treatment of 5 with Ge(HMDS)(2) led to a mixture of uncharacterized compounds, a similar treatment with the sterically alleviated diaminogermylene Ge(NCH(2)(t)Bu)(2)C(6)H(4) provided [Ru(3){μ-Sn(HMDS)(2)}(2){μ-Ge(NCH(2)(t)Bu)(2)C(6)H(4)}(CO)(9)] (7), which is a unique example of Sn(2)GeRu(3) cluster. All these reactions, coupled to a previous observation that [Ru(3)(CO)(12)] reacts with excess of Ge(HMDS)(2) to give the mononuclear complex [Ru{Ge(HMDS)(2)}(2)(CO)(3)] but triruthenium products with less bulky diaminogermylenes, indicate that, for reactions of [Ru(3)(CO)(12)] with diaminometalenes, both the volume of the diaminometalene and the size of its donor atom (Ge or Sn) are of key importance in determining the nuclearity of the final products.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call