Abstract

Net energy for lactation (NEL) and metabolizable protein (MP) are the 2 main nutritional forces that drive synthesis of milk components. This study investigated mammary-gland metabolism in dairy cows in response to variations in the supply of NEL and MP. Four Holstein dairy cows were randomly assigned to a 4 × 4 Latin square design, in which each experimental period consisted of 14 d of dietary treatment. The diets provided 2 levels of NEL (low energy, 25.0 Mcal/d vs. high energy, 32.5 Mcal/d) and 2 levels of MP (low protein, 1,266 g/d vs. high protein, 2,254 g/d of protein digestible in the intestine) in a 2 × 2 factorial arrangement. Performance and dry matter intake (DMI) were measured during the last 5 d of each period, and the mammary net balance was measured on d 13 by collecting 6 sets of blood samples from the left carotid artery and left mammary vein. Mammary plasma flow was measured according to the Fick principle for Phe and Tyr. The mammary net balance of carbon equaled the uptake of nutrients expressed as carbon minus the output of lactose, fatty acids (FA) synthesized in the mammary gland, AA of milk protein, and glycerol-3P from triglyceride on d 13. Milk, lactose, fat, and protein yields increased when NEL and MP supplies increased. However, increasing the NEL supply increased FA synthesis more than increasing the protein supply did. In addition, FA secretion increased more than lactose secretion when the NEL supply increased. Increasing the NEL supply increased the left half-udder uptake of all major energy-yielding nutrients by increasing mammary plasma flow. However, nutrient uptake increased more than milk output did, which in turn increased carbon dioxide output. This increase in nutrient oxidation by the mammary gland decreased the mammary efficiency of nutrients utilization when the NEL supply increased. Increasing MP supply tended to increase glucose uptake through mammary clearance and increased mammary AA uptake with no change in mammary plasma flow. In addition, the protein supply did not change the mammary uptake of acetate or β-hydroxybutyrate. The increase in milk-component secretions in response to either NEL or MP supplies occurred through different metabolic adaptations (increase in mammary plasma flow vs. clearances, respectively). These results suggest that the nutrient use by the mammary gland is highly flexible, which helps in maintaining milk and milk-component yields even with limiting nutrient supplies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call