Abstract
We report a study on the growth kinetics and resultant structures of arrays of pillars in photo-cross-linkable films during irradiation with a periodic array of microscale optical beams under ambient conditions. The optical beams experience a self-focusing nonlinearity owing to the photopolymerization-induced changes in refractive index, thereby concentrating light and driving the concurrent, parallel growth of microscale pillars along their path length. We demonstrate control over the pillar spacing and pillar height with the irradiation intensity, film thickness, and the size and spacing of the optical beams. The growth of individual pillars in a periodic array arises from the combination of intense irradiation in the beam regions and oxygen inhibition afforded by the open, ambient conditions under which growth is carried out. We propose a kinetic model for pillar growth that includes free-radical generation and oxygen inhibition in thick films of photoinitiated media in order to interpret the experimen...
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.