Abstract

Synthesis of various nanostructured semiconductor materials and processing them for different device fabrications has been at the forefront of research for the last two decades. In comparison to spherical nanoparticles, anisotropic materials e.g. nanorods, nanowires, and nanodisks have been widely explored to obtain a better performance of the devices. In addition, it is also well-known that nanomaterials, on doping with suitable impurities, can enhance the device sensitivity and speed. Combining both, we report here the synthesis of micrometer long In2S3 nanosheets and on doping them with Cu(I), we have studied here their photoresponse properties. These nanosheets are synthesized in a high temperature colloidal method following a catalytic thermal decomposition of a single source precursor of In and S. From various TEM, HRTEM, and HAADF images the growth pattern of these sheets is investigated, and the obtained moire fringes at the overlapped region are discussed. Finally, the comparative study of the de...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.