Abstract

Titanium, nickel, and tungsten boride nanoparticles were synthesized in the triple thermal plasma jet system. The coalesced high-enthalpy thermal plasma jet not only generates extensive high temperature regions but also allows the starting materials to penetrate into the center of high temperature regions effectively. The synthesis process of metal boride was investigated according to the nucleation temperature of three metals and boron. In the case of titanium and nickel borides synthesis, metals nucleation temperatures are lower than boron. The crystallinity of synthesized titanium boride nanoparticles was higher than nickel boride nanoparticles, since not only the nucleation temperature of titanium is higher than nickel but also the Gibbs free energy of all titanium boride was lower than whole nickel boride. However, the nucleation temperature of tungsten is higher than boron where nanoparticle synthesis process differed from former synthesis processes. It had influence on the crystal growth time in the high temperature regions where tungsten boride crystal structure was strongly prepared than nickel boride nanoparticles.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call