Abstract

A method has been developed to synthesize metal and metal oxide nanostructures in high yields on the surface of SiO 2/Si substrate. In this method, starting materials in a covered alumina crucible are thermally evaporated under a high vacuum or a low pressure of ambient air. Spherical gold nanoparticles with a size of 15 nm and nanowires with a diameter of 70 nm were synthesized. SnO 2 rough microwires, smooth nanowires, and nanoknives were synthesized by using Sn granules, SnO powder, and SnO 2 powder as source materials, respectively. The microwires showed a quadrangular cross section and a length of several microns, while the nanowires showed a circular cross section and approximately the same length. The effects of source temperature and deposition time on nanostructure growth were studied. X-ray diffraction patterns suggested that the as-synthesized products consisted of crystalline nanostructure. Nanocomposite gas sensors on the base of noble metal and metal oxide were fabricated. These SnO 2 nanowire gas sensors showed a reversible response to dilute NO 2 gas at operating temperatures ranging between room temperature and 300 °C even at high concentrations. The results demonstrated that gold doping improved the sensor response.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.