Abstract

A conducting polymer layer was introduced into the pore surface of mesoporous carbon via vapor infiltration of a monomer and subsequent chemical oxidative polymerization. The polypyrrole, conducting polymer has attracted considerable attention due to the high electrical conductivity and stability under ambient conditions. The mesoporous carbon-polypyrrole nanocomposite exhibited the retained porous structure, such as mesoporous carbon with a three-dimensionally connected pore system after intercalation of the polypyrrole layer. In addition, the controllable addition of pyrrole monomer can provide the mesoporous carbon-polypyrrole nanocomposites with a tunable amount of polypyrrole and texture property. The polypyrrole layer improved the electrode performance in the electrochemical double layer capacitor. This improved electrochemical performance was attributed to the high surface area, open pore system with three-dimensionally interconnected mesopores, and reversible redox behavior of the conducting polypyrrole. Furthermore, the correlation between the amount of polypyrrole and capacitance was investigated to check the effect of the polypyrrole layer on the electrochemical performance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.