Abstract

Abstract Coke formation is a major reason in deactivation of acidic zeolite catalysts in industrial processes such as methanol to hydrocarbons conversion. Protecting the surface of acidic zeolite with an inert porous shell can greatly hinder the coke formation on the surface, and hence boost the lifetime of the catalyst. In this work, a solid-state steam-assisted method for synthesis of such optimized protective shell (silicate-1, ~15 nm thickness) is designed. This general and simple protocol can be applied to acidic zeolite catalysts to improve their catalytic lifetime. The silicalite-1 shell is synthesized on mesoporous ZSM-5 zeolite to explore its catalytic activity in methanol to hydrocarbons conversion. XPS and TEM analysis confirm the coverage of mesoporous zeolite crystals by non-acidic shell. In addition, nitrogen physisorption shows the accessibility of mesoporous ZSM-5 via microporous silicalite-1 network. Applying this protective shell increases the lifetime of the catalyst by 100% and its conversion capacity by 130%, in comparison to mesoporous ZSM-5 without the shell. The controlled formation of thin layer of microporous silicalite-1 around mesoporous ZSM-5 crystals (without growth of individual silicalite-1) accounts for enhanced catalytic improvement.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.