Abstract

This article describes the preparation of mesoporous silicon granules with a layered structure directly from silicalite-1 single crystals. The silicalite-1 single crystals were thermally reduced in vacuum at 630 °C, with the original shape retained. The samples are confirmed as crystalline silicon by X-ray diffraction and transmission electron microscope. The silicon granule is composed of a monocrystalline surface and polycrystalline layered interior. A surface area of around 66 m2 g−1 and the pore size centered at 3.7 nm were obtained from nitrogen porosimetry, BET and BJH analysis. The ZnO clusters have been loaded into the porous silicon granule by thermal diffusion method. The photoluminescence emission centered at 3.44 eV originates from the small particles of ZnO and the band at 2.81 eV may be due to both an oxidized surface and quantum confinement effects. The microstructure in this silicon granule is very different from those in etched samples. The synthetic design demonstrates an interesting way from the microporous zeolite to mesoporous silicon and enlarges the structural diversity of porous silicon crystal.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.