Abstract

Mesoporous-silica-coated Gd2O3:Eu/silica nanoparticles were synthesized by a multistep chemical process and characterized by XRD, TEM and N2 adsorption/desorption isotherms in terms of size, morphology and porosity. The core Gd2O3:Eu obtained by this method was highly luminescent upon excitation, giving the function of cell imaging upon incubation with the human cervical carcinoma (HeLa) cells. The outer porous silica shell is able to load the anticancer drug with a relatively high loading efficiency and release the loaded drugs at a sustained rate. The HeLa cells can be killed effectively on incubation with the core-shell porous particles loaded with the anticancer drug DOX. Meanwhile, the accumulation of mesoporous nanoparticles loaded with drugs in the target location could be monitored via fluorescence imaging. Therefore, the core-shell hybrid nanoparticles presented in this work are potential multifunctional biomaterials for smart detection or diagnosis and therapy in future biomedical engineering.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call