Abstract

Mesoporous carbon capsules encapsulated with Fe3O4 nanoparticles were prepared by the successive coating of a silica layer and a subsequent mesoporous silica/carbon layer on the surface of Fe3O4 nanoparticles followed by chemical etching with NaOH solution. TEM observations show that the as-obtained samples had a rattle-like structure: Fe3O4 nanoparticles were encapsulated in the interior of the mesoporous carbon capsules. The typical nitrogen adsorption/desorption results demonstrate that the specific surface area for the as-prepared samples is up to 1570 m2 g−1, and the total pore volume is about 3.02 cm3 g−1. The porous wall structure of the lateral carbon capsules provides the sufficient spaces that contribute to high adsorption capacities and faster adsorption rates of pollutants molecules in aqueous media. The nanocomposites are superparamagnetic at room temperature with a saturation magnetization of 5.5 emu g−1, which provides the prerequisite for the fast magnetic separation in wastewater treatment application. Water treatment experiments indicated that the as-prepared samples exhibited higher adsorption rates and more effective removal capacity of organic pollutants compared with commercial activated carbon (AC), and their maximum adsorption capabilities for methylene blue (MB), congo red (CR), and phenol reached 608.04, 1656.9 and 108.38 mg g−1, respectively. The multifunctional nanocomposites can be potentially used as absorbents for fast, convenient, and highly efficient removal of pollutants from the wastewater, which will play important roles in the purification or desalination of natural water and industrial effluents.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.