Abstract
The degummed wastewater from silk processing contains a huge amount of amino acids and polypeptides from sericin. The silk degumming water is far from being exploited fully. Sericin in the degumming water is generally wasted and causes environmental pollution. In this study, simulated silk degumming water was hydrolyzed by alkaline protease to produce abundant amino acids and polypeptides. After enzymatic hydrolysis, the maximum free amino groups concentration in the silk degumming water was approximately 54 mM. It facilitated the recycling of silk degumming water for the production of melanin-like amino acid surfactants as raw materials. 4-Tert-butylcatechol was used as the starting material to generate o-quinone via oxidation by ceric ammonium nitrate. o-Quinone was coupled with free amino groups in enzymatic hydrolysates of silk degumming water to synthesize a sericin-based amino acid surfactant as hydrophobic and hydrophilic group, respectively. Through the green and simple synthesis route, the product was characterized to have a novel melanin-like structure. The product exhibited superior surface-active properties by lowering the surface tension to 32.39 mN m−1. Furthermore, it demonstrated good foaming ability and foam stability, with the initial foam volume of 37 mL and the foam half-life time of more than 25 min. The product owned a good emulsification ability in the oil-water emulsion with delamination time of 297 s and 291 s for emulsion formed by soybean oil and liquid paraffin, respectively. The wetting time of the canvas sheet was only 134 s. Consequently, the product showed low surface tension, good foaming, emulsifying, and wetting properties.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.