Abstract

A reversible addition-fragmentation chain transfer (RAFT) agent was directly anchored onto Fe3O4 nanoparticles in a simple procedure using a ligand exchange reaction of S-1-dodecyl-S′-(α,α′-dimethyl-α″-acetic acid)trithiocarbonate with oleic acid initially present on the surface of pristine Fe3O4 nanoparticles. The RAFT agent-functionalized Fe3O4 nanoparticles were then used for the surface-initiated RAFT copolymerization of N-isopropylacrylamide and acrolein to fabricate structurally well-defined hybrid nanoparticles with reactive and thermoresponsive poly(N-isopropylacrylamide-co-acrolein) shell and magnetic Fe3O4 core. Evidence of a well-controlled surface-initiated RAFT copolymerization was gained from a linear increase of number-average molecular weight with overall monomer conversions and relatively narrow molecular weight distributions of the copolymers grown from the nanoparticles. The resulting novel magnetic, reactive, and thermoresponsive core-shell nanoparticles exhibited temperature-trigged magnetic separation behavior and high ability to immobilize model protein BSA. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 542–550, 2010

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.