Abstract

A hydrothermal technique to simultaneously remove a SiO2 template and crystallize a TiO2 outer layer was used to create magnetically separable, hollow rattle-type nanoparticles consisting of a magnetic Fe3O4 core contained within a hollow TiO2 shell. Fe3O4 cores approximately 240 nm in diameter were synthesized, subsequently coated by SiO2 and finally coated with TiO2. This was followed by a hydrothermal treatment to selectively etch the silica, resulting in rattle-type particles with a final outer shell diameter of approximately 390 nm. The product of hydrothermal treatment were rattle-type particles with increased crystallinity and a 68% increase in surface area. Characterization confirmed the ability to etch a hard SiO2 template through use of a simple and benign thermal treatment with pure water, while simultaneously introducing a crystalline phase into the TiO2 active layer. The potential of the particles to be employed as a catalyst in UV induced advanced water treatment for removal of organic contaminants was evaluated through a colorimetric photocatalytic degradation assay using methylene blue as a model contaminant. The ability of the particles to be magnetically separated from solution after treatment and recycled for consecutive treatment cycles was then demonstrated. This technique for selectively removing a hard SiO2 template while simultaneously crystallizing a TiO2 shell avoids the use of hazardous chemical etchants or complex processing, rendering the synthesis of hierarchical, multimaterial, hollow, porous rattle-type particles a simple, attractive, and environmentally friendly "one-pot" technique for potential industrial application.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.