Abstract
Magnetic graphene oxide-titanate composites (MGO@TNs) were synthesized via growing titanate nanosheets on the graphene oxide sheets with magnetite nanoparticles anchored on. The as-prepared MGO@TNs showed a hierarchical structure and large specific surface area (193.4 m2/g), which were suitable for rapid and effective adsorption of Pb(II) from wastewater. Moreover, the loaded magnetite nanoparticles guaranteed the effective magnetic separation of MGO@TNs, avoiding secondary pollution. The adsorption mechanism were illuminated to be ion exchange and surface complexation. Batch adsorption experiments showed the maximum adsorption capacity of MGO@TNs reached 322.7 mg/g for Pb(II) removal. The removal efficiency retained 89.6% after six adsorption-desorption cycles. In addition, the efficiency reached up to 99.8% when applying MGO@TNs for removal of Pb(II) from simulated realistic battery wastewater, ensuring the safe discharge of treated water. The good adsorption performance, recyclability and easy magnetic separation ability made sure that the MGO@TNs has great potential for purification of Pb(II) contaminated wastewater.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.