Abstract

Promising applications of metal phosphorous trichalcogenides (M2 P2 X6 or MPX3 ) have been predicted in optoelectronics, photoelectrocatalysis, and water-splitting reactions, mainly due to its wide bandgap. Transition metals are widely used in the synthesis of MPX3 , however, divalent cations of alkaline earth metals can also be constituents in MPX3 2D layered structures. Herein, MgPX3 (X = S, Se) are synthesized and their photoelectrochemical (PEC) activity is tested in the hydrogen evolution and oxygen evolution reaction (OER) regions under a wide range of wavelengths. MgPSe3 photoelectrode shows the best PEC performance with a response of 1.6 ± 0.1 mA cm-2 under 420 nm. In the light-assisted OER, a 200 mV improvement is obtained in the overpotential at 10 mA cm-2 for MgPSe3 . The better performance of MgPSe3 is consistent with its lower optical bandgap (Eg = 3.15 eV), as a result of the variation of electronegativity between selenide and sulfide.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call