Abstract
We report on an efficient route to design large macrocyclic polymers of controlled molar mass and narrow dispersity. The strategy is based on the synthesis of a triblock copolymer ABC, in which the long central block B is extended by two short A and C sequences bearing reactive antagonist functions. When reacted under highly dilute conditions, this precursor produces the corresponding macrocycle by intramolecular coupling of the A and C blocks. Chloroethyl vinyl ether was selected as the monomer for the central block B, because it can be readily derivatized into brushlike polymers by a grafting process. The corresponding macrocyclic brushes were decorated with polystyrene or randomly distributed polystyrene and polyisoprene branches. In a selective solvent for the polyisoprene branches, the macrocyclic brushes self-assemble into cylindrical tubes of up to 700 nanometers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.