Abstract
In a synchronous digital system, the activity of the clock signal is a major energy consumer. It is responsible for 15% to 45% of the total consumed energy. Once reducing the activity of the clock signal, it is possible not only a reduction of the considered energy, but also a reduction of clock skew problems and electromagnetic iteration. An interesting strategy to achieve this goal is to design the synchronous digital system to operate in transitions of both edges of the clock signal (double-edge triggered -- DET), once it allows a 50% reduction in the frequency of the clock signal, although showing the same processing rate data. In this paper it is proposed a method that synthesizes synchronous digital systems that operate on both edges of the clock signal, using only flip-flops sensitive to a single edge of the clock signal (single-edge triggered flip-flops - SET-FF) as components of the state memory. The proposed method presents good results and a high probability of practical implementation.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.