Abstract

In this investigation, a new polymer with low surface energy was synthesized by grafting a triazole group onto polyepichlorohydrin (PECH) rubber that contained no halogens. The chlorine on PECH was first replaced by an azide group, and this attached azide was then converted to a triazole group with alkyl chains using the azide-alkyne Huisgen cycloaddition reaction. Analyses confirmed the structure of final product, PECH-triazole polymer. The grafting reactions increased the surface roughness. The static contact angles of water or CH2I2 droplets on the PECH-azole film were 101.7° and 71.3°, respectively. The advancing and receding contact angles for water on PECH-azide were 119.8° and 13.7°, respectively. The PECH-triazole polymer has omniphobic properties with rose petal characteristics. The PECH-triazole has low dispersive surface energy (21 mN/m) and negligible non-dispersive surface energy, giving a wetting envelope that is similar to the one of PTFE polymer. X-ray photoelectron spectroscopy and transmission infrared spectroscopy suggested that the interactions of the N atoms on the triazole ring and the O atoms on the PECH backbone constrained the orientation of CH2 groups and reduced the surface energy of the thin film.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call