Abstract

Nonionic surfactants have an extraordinary fascination for the researchers in the field of drug delivery for enhancing drug bioavailability and therapeutic efficacy. Here, we are reporting the synthesis, characterization, drug entrapment efficiency (EE), critical micellar concentration, and biocompatibility evaluation of sulphanilamide based new nonionic surfactants. The surfactants were synthesized in single step reactions and characterized through 1H NMR, FT-IR, and mass spectrometric analysis. The surfactants abilities for niosomal vesicles formation were investigated utilizing Ciprofloxacin as a model drug. The drug loaded niosomal suspension of the synthesized surfactants was screened for shape; size, polydispersity index, and drug EE utilizing AFM, Zetasizer, and UV, respectively. The compatibility of the drug in drug loaded vesicles with excipients was assessed utilizing FT-IR spectroscopy. The biocompatibility of the synthesized surfactants was assessed through blood haemolysis and cell cytotoxicity assays. Results of this study showed that the synthesized surfactants were quite haemocompatible and nontoxic in nature and were able to form spherical vesicles. The size and drug EE of the vesicles were dependant on the length of surfactant aliphatic chain. Surfactant with long aliphatic chain was more efficient in entrapping the drug and could be used as a potential vesicular drug delivery vehicle for improving the lipophilic drug’s bioavailability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.