Abstract

Li4Ti5O12 (lithium titanium oxide) or LTO is extensively utilized as active material in Li-ion battery anode mainly due to its zero strain properties and excellent lithium-ion intercalation/deintercalation reversibility with negligible volumetric change. However, LTO is still faced with low electronic conductivity problem, thus the addition of another material such as graphene is necessary to overcome. In this study, LTO was synthesized using sol-gel method with addition of Li varied from 35, 40 and 55 wt% which was controlled by addition of Li2CO3. XRD analysis was performed to investigate the crystal structure and phase characteristic of synthesized powder. The results revealed that LTO with addition of 55 wt% Li exhibited the highest purity of Li4Ti5O12 phase of 97.7%. It was then added with 5 wt% of graphene. Two-coin cells of Li-ion batteries were made from LTO powders without and with graphene addition as active materials for anode and their electrochemical performances were analyzed. LTO without and with graphene show conductivity of 3.40710-5 and 2.48810-5 S/cm, while obtained specific capacity was about 140 mAH and 85 mAh, respectively. This would require further optimization for current experimental condition particularly on graphene addition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.